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CATEGORY ANALYSIS OF THE MARINE CORPS
COMBAT READINESS EVALUATION SYSTEM (MCCRES)

by

S. Zacks, W. H. Marlow and Zeev Barzily

1. Introduction

The Marine Corps Combat Readiness Evaluation System (MCCRES) and
various analyses have been discussed recently in a series of papers by
Barzily, Catalogne and Marlow [2], Zacks and Marlow [7] and Barzily,
Marlow, and Zacks {8]. 1In the present paper we conduct statistical
analysis of MCCRES from the point of view of the ten categories
introduced by Barzily [1]. As in the previous work we restrict our
present attention to Volume I1 of MCCRES, which deals with infantry
battalions and «ontains 800 different requirements. The category
approach of Barzily classifies all requirements into the following

ten categories.
1. REPORTING to higher levels of command
2. PREPARING for operation
3. COMMUNICATING
4. PERFORMING as Marines
5. DELIVERING supporting fire
6. PLANNING of operations

7. CONFORMING to doctrine




>

'v‘f"v'

p—y

T-450

8. EXECUTING operations
9. PROVIDING combat service support

10. SUPERVISING required actions of individual Marines

In a given evaluation an infantry battalion is evaluated on a subset of

the 800 requirements. That is, due to time, budget, and other constraints,
not all 800 requirements are applicable. The battalion is given a score

of "Yes" in case a requirement is fulfilled satisfactorily, and a score of
"No" otherwise. The basic assumption in our category approach is that the
probability of "Yes" for a given unit is the same for all ihe applicable
requirements of the same category (see Appendix 1). These probabilities
may change from ocne category to another. The vector of the ten probabili-
ties, corresponding to the ten categories, is a parametric vector which
characterizes the unit at that particular evaluation. Different units
usually have different characterizing parametric vectors and the same unit
may have different characterizing parametric vectors in different evalua-
tions. In addition to the parametric vector of "Yes" probabilities, there
are several other interesting statistical features of the data. The pro-
portion of "Yes's' among the applicable requirements of different categories
in the same evaliation are not independent. It is interesting to study the
correlation structure between these categories. In the present study we
present statistical 1odels and develop procedures designed to estimate
interesting model parameters. We base the analysis on the results of

N = 27 evaluations. The statistical methods developed here have a wide
range of possible applications for the analysis of categorical data in
which a different number of independent Bernoulli trials are pérformed in
each category, but the proportions of successes in different categories

are dependent va:iables.

2. The Structure of the Data and the Statistical Model

Let N designate the number of evaluations, N = 27, and k designate

the number of categories, k = 10 . Let Xij y 1=1,...,N, j=1,...,k

designate the number of "Yes's" among the applicable requirements of the
24 P
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j=th category in the i-th evaluation. Let Mij , 1=1,...,N , j=1,...,k

designate the cocresponding number of applicable requirements. In Table

2.1 we present the values of xij and Mij which have been compiled from

MCCRES data files. All the analyses in the present paper are based on the
data in this table.

Let éi (i=1,...,N) designate the vector of k X - values corre-

sponding to evaluation i , and %i the vectors of corresponding M - values.

The fundamental assumptions of the statistical model are:

A.l %l s %2""’%N are independent random vectors;

A.2 The marginal distribution of Xij is binomial,
B(Mij s eij) , for all i=1,...,N, and j=1,...,k .

eij designates the probability of '"Yes" for all

the requirements in evaluation i and category j .

In Appendix 1 we test a null hypothesis which is based on assumption
A.2. This hypothesis is accepted by the data in such a way to provide

substantial empirical verification.
The multivariate distributions of %1 , i=1,...,N , are specified

indirectly by considering first the following transformations. Let

M,. +1 (2.1)
ij

Y, =2 sin~t ( ﬁl—"‘—”), i=
These transformations are known as variance stabilizing transformations for
binomial random variables (see Johpson and Kotz [3; p. 65], who suggest
the transformation Y = 2 sin—l V@ , Wwhere 6 = (x + 3/8)/(M + 3/4) .
The asymptotic properties of (2.1) and of this one are the same).
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Total number of satisfied and applicable requirements

EVAL/CAT.

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

100
101

Table 2.1

by category and evaluation¥

2
44
54

70
76

19
26

33
36

34
44

29
29

41
46

18
48

41
48

11
11

31
35

21
23

35
38

29
30

40
41

43
51

26
31

5
11

35
37

41
41

30
31

32
34

29
32

58
58

3
40
40

42
44

26
28

25
31

35
37

20
29

32
34
28
32

36
37

35
38

23
23

14
17

5
6
23
27
13
17

29
32

18
21

35
36

38
38

25
29
14
21

29
34

33
36

28
30

29
32

24
27

32
38

4
14
23

18
24

12
21

20
24

21
24

23
24

15
21

12
22

25
26

19
24

18
18

16
16

6
9

17
25

16
23

13
23

16
23

26
28

27
27

13
24

4
17

21
25

26
28

22
25

16
25

21
23

27
29

3
55
69

67
72

45
56

53
55

52
54

57
63

63
64

48
63

64
64

60
67

56
56

35
54

6
6

57
59
4
4

59
59

9
9

62
63

64
65
58
61
41
56

52
66

63
64

55
57

31
61

52
58

69
71

15
15

10
16

15
16

55
62

36
36

73
74

52
52

76
78

90
98

49
61

14
22

85
92

87
88

61
63

56
64

48
56

121
122

7

50
63

65
73

44
53

49
54

48
5S4

59
61

47
51

34
57

44
57

45
61
30
31

16
30

8
10

49
57

33
35

59
63

44
45

66
68

60
71

38
56

22
36

45
54

63
68

52
57

50
58

32
40

15
78

- —r——— e R T

8
53
73

97
100

47
54

68
72

46
67

62
67

50
55

65
87

93
104

67
77

17
17

12
18

36
37

62
70

44
47

63
70

54
55

87
90

92
108

56
67

12
28

85
90

93
97

49
58

47
58

42
54

136
138

28

10

13
17

17
20

12
14
16
16

12
14

18
18

13
17

9
15

18
18

17
17

11
12

7
10

5
5
13
18

11
16

12
16

13
13
14
16

17
17

17
18
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*The upper number in each cell represents the total number of satisfied
requirements; the lower number represents the total number of applicable

requirements.
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For large values of Mij the random variables Yi' are distributed

approximately normally, with mean nij =2 sin—l Jaij and variance

1/M,, . Let Y, = (Y.. ,...,Y.,) be the k-variate vector of the
ij nd il

ik
transformed X-values of the i-th evaluations. According to assumption

A.l, are independent rundom vectors. We introduce here a third

’%l"..’&

assumption concerning the muitivariate distribution of Yi (i=1,...,N) .
"\

A.3 The random vectors %i have multivariate normal
L
distributions with mean ., = (M. N o and
s Ny (Nyq seeesNyy)

covariance matrices ii = (I

i‘jj') ?

where
1

if PR
M ’ 1 J=]
i =

1.33" H (2.2)
, . . ')
pjj ] / MijMij ] 9 1f J+J .
p..y+ 1is the correlation between Y., and Y,,, .
1] ij ij

It is assumed that the correlations pjj' are the same for all evaluations.
In Appendix 2 we show that pjj' are asymptotically equivalent to the

correlations between the proportions of Yes's, 0.. = X,./M,, .
i) ij’ 1j

3. The Bayesian Framework

The Bayesian model assumes that the characterizing parametric vectors

Qi of the different evaluations vary according to a (prior) distribution

of all possible evaluations. This is a model of a superpopulation which
makes it possible to relate the information obtained from all evaluations
in a consistent manner. Following the model developed in the previous
section, we present here the Bayesian model in terms of the distributions
of zi (1=1,...,N) .
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We assume. that the mean vectors Qi of the distributions of
Yi(i=l,...,N) have a prior normal distribution with mean vector E and

diagonal covariance matrix (D) . The overall distribution of Yij R

where nij are treated as random variables, is called a predictive

distribution. According to the above assumption, the predictive distribu-

tion of each Yi is normal with the same mean, n , and covariance matrix
oy N

Ii + (D) (see Zacks [6; p. 296]). The predictive marginal distributions

of the components Yij are normal with means ﬁj (j=1,...,k) and variances
2 _ 1 2 . . .

1,. = —7— + D, (i=1,...,N, j=1,...,k) . Since we assumed that the
ij Mij J

correlations pjj' are the same for all evaluations, we will treat the
vectors n » and the matrices (D) and (R) = (pjj' s Jej' =1,...,k) as
n

unknown but fixed parameters. We remark that the predictive marginal

distributions of Yij resemble the distributions of the observations in

Model II of Analysis of Variance (see Zacks [6; p. 79]), in which the

components of variance are l/Mij (known) and Dj (unknown) . We
conclude this section by specifying the posterior distributions of nij

given Y According to the Bayesian model, the posterior distribution

ij *
of nij given Yij is normal with mean
= (n .1
E {ngg|¥y5b = (0 +DM,. ¥, /L + DM, 0, (3.1)

and variance

\' {nij]Yij} =D /(1 +M

’ .2
5 Dj) (3.2)

3

Notice that the Bayes estimator of for a squared-error loss is given

N ij

by (3.1), with a Bayes risk given by (3.2). 1If ﬁj and Dj are un-

specified, one can estimate them from the data, to obtain empirical

Bayes estimators of the characterizing parameters (see Zacks [6; p. 321]).
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4. Bayesian Confidence Inrervals for the Characterizing
Parameters

Bayesian confidence intervals, at level 1l-a , for specified para-
meters, are defined as the intervals in the parameter space whose posterior
coverage probabilities, given the sample data, are at least 1l-a .
According to the model of Section 3, the posterior coverage probability
of the intervals
b 1/2

n. + DM _Y_, .
| J 1) 1) _1
1+1.M,, 1-a/2 1+ M, .D,
J ij 11 1]

+ Z (4.1)
is (l-a) , where ZY is the y-th fractile of the standard normal dis-

tribution. We determine for each category empirical estimates of the

prior parameters ﬁj and Dj and, by substituting these estimates in
(4.1), we obtain empirical Bayes confidence intervals for nij (i=1,...,N) .
The substitution of estimates of ﬁi and Dj for the correct values will

generally effect the coverage probabilities. The estimates described below
are consistent, and we expect that, for large values of N , the actual
coverage will be close to the nominal one. In order to provide conserva-
tive intervals, we have used in each category, the Bonferroni method of
simultaneous confidence intervals, for all the N = 27 evaluations (see

Miller [4]). For this purpose we replaced o in (4.1) by a' = a/N .

Applying the transformation
. 2
8 = sin"(n/2) , (4.2)

which is strictly increasing for 0 < n < 7, we can obtain from the

n - confidence intervals 6 - confidence intervals. These intervals, for
the ten categories and twenty seven evaluations with o = .05 , are

presented in Table 4.1.
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EVAL
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0.802
0.902
0.834
0.853
0.548
0.814
0.791
0.397
0.778
0.792
0.755
0.634
0.716
0.%00
0.834
0.768
0.791
0.920
0.901
0.747
0.586
0.871
0.871
0.823
0.770
0.753
0.921

0.807
0.872
0.675
0.844
0.840
0.827
0.877
0.385
0.746
0.723
0.733
0.451
0.671
0.744
0.856
0.89/
0.895
0.876
0.812
0.654
0.464
0.815
0.909
0.851
0.733
0.704
0.933

0.987
1.000
1.000
0.999
0.881
0.995
0.995
0.749
0.977
0.983
1.000
0.997
1.000
1.000
1.000
0.985
0.995
1.000
1.000
0.979
0.965
0.999
0.99¢
0.998
0.990
0.994
1.000

0.971
0.988
0.966
0.996
0.98/
0.996
0.997
0.704
0.954
0.924
1.000
0.950
1.000
0.974
1.000
1.000
1.000
0.999
0.978
0.934
0.928
0.982
1.000
0.999
0.968
0.964
1.000

Table 4.1

CONFIDENCE INTERVALS FOR CAT.

2

L u
0.648 0.942
0.794 0.982
0.519 0.942
0.723 0.991
0.592 0.931
0.820 1.000
0.717 0.980
0.269 0.668
0.680 0.964
0.711 0.968
0.509 1.000
0.407 0.982
0.659 1.000
0.685 0.984
0.669 0.996
0.734 0.992
0.767 1.000
0.817 1.000
0.673 0.957
0.626 0.972
0.331 0.929
0.762 0.997
0.865 1.000
0.772 1.000
0.747 0.997
0.699 0.991
0.901 1.000

CONFIDENCE
0.642 0,921
0.752 0.966
0.665 0.946
0.747 0.979
0.727 0.971
0.835 0.997
0.759 0.984
0.465 0.812
0.615 0.914
0.588 0.892
0.765 0.999
0.406 0.843
0.523 0.986
0.700 0.957
0.747 0.994
0.796 0.987
0.823 0.999
0.850 0.997
0.701 0.944

0.532 0.863
0.463 0.863

0.670 0.947
0.789 0.983
0.758 0.980
0.704 0.958
0.617 0.943
0.847 0.994

0.849
0.802
0.751
0.683
0.782
0.625
0.772
0.723
0.807
0.763
0.794
0.679
0.668
0.704
0.658
0.743
0.698
0.804
0.844
0.712
0.621
0.712
0.757
0.758
0.743
0.724
0.709

INTERVALS

0.586
0.881
0.710
0.821
0.545
0.791
0.755
0.616
0.783
0.736
0.737
0.470
0.801
0.746
0.775
0.763
0.856
0.869
0.737
0.689
0.323
0.837
0.862
0.688
0.653
0.617
0.924

U

0.999
0.988
0.984
0.956
0.987
0.931
0.986
0.972
0.993
0.981
0.997
0.973
0.986
0.969
0.966
0.979
0.975
0.993
0.999
0.970
0.943
0.965
0.980
0.985
0.979
0.977
0.960

FOR CAT.

.944
197
.989
.993
<954
.937
.923
.999

000000 OCOCOO~OOOHOHOODOODOOOOO
0
O
W

Cl-C5

L

0.366
0.481
0.333
0,556
0.598
0.699
0.437
0.318
0.717
0.517
0.714
0.6¢£8
0.328
0.427
0.432
0.335
0.432
0.682
0.793
0.321
0.128
0.568
0.682
0.609
0.396
0.634
0.691

C6-C10

0.771
0.789
0.804
0.808
0.793

'0.819

0.825
0.759
0.797
0.789
0.811
0.788
0.794
0.805
0.811
0.819
0.808
0.826
0.809
0.797
0.792
0.829
0.804
0.793
0.804
0.814
0.810

U

0.882
0.942
0.872
0.972
0.984
1.000
0.935
0.855
1.000
0.958
1.000
1.000
0.969
0.909
0.922
0.860
0.922
0.995
1.000
0.843
0.711
0.973
0.995
0.985
0.890
0.994
0.995

0.942
0.950
0.965
0.966
0.958
0.971
0.970
0.944
0.961
0.952
0.970
0.960
0.966
0.965
0.970
0.971
0.966
0.973
0.966
0.961
0.961
0.974
0.963
0.961
0.965
0.970
0.964

.661
.809
.655
.834
.832
.769
880
.622
.913
.763
.902
.514
.621
.843
.582
.906
669
.878
.881
.824
.589
.649
880
.839
.401
. 754
.866

OO0 0CO0O0O0O0CO0OO0OO0OO0CO0O00OO0O0OO0COCOOOOODO0OOC

(o N NN -E-N-E-N-R-E-R-N-N-N-N-N-N-N-N-N-N-N.-N-]
o
&
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0.926
0.988
0.940
0.999
0.999
0.980
1.000
0.912
1.000
0.975
1.000
0.858
1.000
0.999
1.000
1.000
1.000
1.000
1.000
0.996
0.903
0.924
1.000
0.999
0.754
0.979
0.999

0.962
0.973
0.979
0.997
0.979
0.997
0.962
0.940
0.997
0.997
0.987
0.968
0.993
0.952
0.951
0.961
0.996
0.980
0.997
0.989
0.940
0.990
0.989
0.989
0.981
0.988
0.990
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The empirical estimates for ﬁj and Dj applied here are:

. 1 N
n, .= — L Y, |, (4.3)
jsN N j=1 13
and
+
N
~ 1 2 ~2 -1
D, = —— XY, -n, - H 4.4
1.8 No Y T M T M| (4.4
where [a] = max (a,0) , and Hj N is the harmonic mean of Mij , 1.e.,
’
-1 1 N ~
H = — X . Notice that n, is a strongly consistent
J»N N LT, M, j,N
i=1 ij
estimator of n. (approaches ﬁj a.s. as N » ®) ., Assuming that Hj N
’
converges to a limit as N > o , Dj N converges to Dj as N grows,
b
The values of aj N and Dj N obtained in this manner are given in
H] ?
Table 4.2.
Table 4.2

Empirical Estimates

of n, and D,
J J

5 LEY D, N

1 2.5851 0.0755
2 2.4125 0.1058
3 2.4494 0.0297
4 2.1691 0.1464
5 2.5379 0.0871
6 2.5185 0.0994
7 2.3468 0.0751
8 2.4176 0.0917
9 2.4886 0.0086
10 2.3883 0.0388
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5. Estimating the Correlations
The marginal bivariate predictive distribution of Yij and Yij' ’
for j 4 j' 4is normal with p.d.f.
f(Yij, Yij';ﬁj * r-\;j' ’ pjj| b Dj H] Dj') =
/2
I ij ij' . 1
2n L+ DM, . 1+DM, ., —
J 1] Jj1 <
l-Oj.,
J (5.1)
2
exp { - l2 e (Y 'ﬁ)+ T | -n ’
+ D, 5 + U '
2(1'Djj0 1 MiJ 5 ij j 1+ Miij' ij 3j

-20.., (Yij - ﬁj)ﬁ;_-] . (Yij' - ﬁi')/ﬁ:i‘{'

Define the weight functions

M, .
= 13 - ‘e
wij TyR D ¢ & 1,...,N, j=1,...,K . (5.2)
ij7]

If the prior means and variances, ﬁj s Dj (j=1,...,k) are known, then, the

predictive quasi-likelihood function of p,., , given the sample data is

33

L(pjj'lYij , Yij , i=1,...,N) =

(5.3) 1is called a 'quasi-likelihood' since the correct likelihood

function is based on the k-variate distributions of xl""’XN .

- 10 -
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In practice, ﬂj and Dj are unknown, we will therefore use the

quasi-likelihood function of p,.,, by substituting in (5.3) estimates of

ji
n. and D, . Thus, let
J h|
N A ~
S% = X W,. (Y., - n.)z » J=1,...,k
iy 1374 h|
and (5.4)
N ~ A R
P = Z ..w . Y - . Y.. - . Y ij'
i3 1=1,F;13 10 Ogy =Ny (e -mgd 34
where
. N N
n. = Zw..Y../Z W.. , (5.5)
3o g N M
and
W..=M_/(1+M,.D, . 5.6
ij 13/( ij J,N) (5.6)

A

The estimator p, ., , which maximizes the log~quasi-likelihood
’

N 2 1 2 2
2(p..,) = 5 log (1-p,.,) - — S, +85,-
1] J] 2(1-p5. ) J J
i3

(5.7)
zpjj'ij'] ’

is called quasi-maximum likelihood (gq.m.1l.) estimator of pjj' . The

derivative of £(p) with respect to p is

o(s? + sj.) - P (L4 0?)

o) oy P ] X (5.8)
30 12 (1ot

- 11 -
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Accordingly, the q.m.l. estimator of pjj' is a solution of the cubic

equation

2
A s2, P..,
o0 - e = —1)p -l -0 (5.9)

for which the second derivative of (5.7) is negative. Accordingly, for

~ ~

given values of D, (j=1,...,k) , we determine W, kK (i=l,...,N, j=1,...,k) ,
j,N 1] ]

and ﬁj (j=1,...,k) and solve (5.9) by the Newton-Raphson method, starting

with the initial solutions
5= 2. 52482y, 5el,..k (5.10)
j i3 j j -

In Table 5.1 we provide the initial estimates of the correlations (5.10) and
the final estimates, which are the solutions of (5.9). The estimates of

Dj are those given in Table 4.2. Two numbers are given in each cell of the

matrix of final estimates of the correlations. The upper number is the
correlation and the lower number is an estimate of its standard error,

namely

~ ~2 A2
s e s = M. P} . 5.
s.E. (5,0 = (1 pJJ)fN(Hp“) (5.11)

}

Every estimate Bjj, . which, in absolute value, is greater than 2 S.E.{ajj,

is significant.

- 12 -

: —a POV PRSP PSSR
P U ——a — a




R TR an S SRR dh it 4

10

D A

1.000
0.765
0.168
0.360
0.373
0.678
0.593
0.692
0.616
0.406

0.765
1.000
0.029
0.442
0.444
0.851
0.781
0.763
0.635
0.593

0.760
0.065
1.000
0.0

0.029
0.192
0.443
0.141
0.421
0.146
0.853
0.040
0.781
0.059
0.769
0.062
0.607
0.104
0.587
0.109

Table 5.1

Initial and final estimates of the

correlation parameters

INITIAL ESTIMATES OF CORRELATIONS

0.168 0.360
0.029 0.442
1.000 0.321
0.321 1.000
0.321 0.385
0.183 0.341
0.122 0.336
J3.099 0.381
-0.133 0.305
0.140 0.565

0.373
0.444
0.321
0.385
1.000
0.613
0.560
0.542
0.364
0.354

0.678
.851
.183
. 341
.613
.000
0.924
0.721
0.623
0.386

OO OO

0.593
0.781
0.122
0.336
0.560
0.924
1.000
0.719
0.641
0.333

FINAL ESTIMATES OF CORRELATIONS

0.163 0.355
0.185 0.158
0.029 0.443
0.192 0.141
1.000 0.319
0.0 0.165
0.319 1.000
0.165 0.0
0.299 0.366
0.168 0.157
0.183 0.347
0.183 0.160
0.120 0.339
0.188 0.161
0.101 0.392
0.190 0.152
~0.120 0.283
0.188 0.170
0.136 0.561
0.187 0.115

0.348
0.160
0.421
0.146
0.299
0.168
0.366
0.157
1.000
0.0

0.596
0.107
0.538
0.120
0.527
0.123
0,322
0.164
0.330
0.163
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0.676
0.087
0.853
0.040
0.183
0.183
0.347
0.160
0.596
0.107
1.000
0.0

0.926
0.020
0.732
0.072
0.599
0.106
0.385
0.153

0.587
0.109
0.781
0.059
0.120

0.188"

0.339
0.161
0.538
0.120
0.926
0.020
1.000
0.0

0.726
0.074
0.615
0.102
0.328
0.163

0.692
0.763
0.099
0.381
0.542
0.721
0.719
1.000
0.491
0.489

0.694
0.082
0.769
0.062
0.101
0.190
0.392
0.152
0.527
0.123
0.732
0.072
0.726
0.074
1.000
0.0

0.469
0.136
0.492
0.131

T-450

0.616
0.635
-0.133
0.305
0.364
0.623
0.641
0.491
1.000
0.322

0.583
0.110
0.607
0.104
~0.120
0.188
0.283
0.170
0.322
0.164
0.599
0.106
0.615
0.102
0.469
0.136
1.000
0.0
0.294
0.169

HFOOOOCOOOOOD

[«R NeNoNoNeNoNoNeNeNoNelNoloNo e N Noi oo

.406
.593
.140
.565
.354
.386
.333
.489
.322
.000

.394

.151

.587

.109

.136
.187

.561

.115
.330
.163

.385

.153
.328
.163
.492
.131
.294
.169
.000
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6. Summary

In the current paper we present confidence intervals for the
category scores as well as the correlations between the scores. The cat-
egory scores help determine the weaknesses and the strengths of the units.
It is important to vbtain confidence intervals on these scores because
before planning remedial training it is necessary to know whether or not
the scores are meaningful. Thus high correlation between two categories
may indicate that training to improve the performance in one can improve

the performance in the other.

The results in Table 5.1 are intuitively explainable. We obtain
high correlation between the categories evaluating the command's perfor-
mance - Categories 1, 2, 6, 7, and 8. But Categories 3 (Communicating),
4 (Performing as Marines), 5 (Delivering supporting fire) and 10 (Super-
vising required actions of individual Marines) evaluate the performance
of various specific groups and thus each of them cannot be expected to

have high correlation with other categories.

A major finding - see Appendix A - is that, for any one battalion,
the probability of "Yes" for a given requirement is the same for applicable

requirements of the same category. This provides considerable justifica-

tion for the use of 10 category scores as a measure of the overall capability

of the battalion.

- 14 -
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APPENDIX 1
We consider here the question of testing assumption A.2.

Typically, for a given evaluation, there are a certain number of
"Yes's" among the applicable requirements. The question is how to test the
hypothesis that the probability of a "Yes'" in a given evaluation depends
only on the category to which the requirement belongs. We have tested

whether this hypothesis is supported by the data, in the following manner.

The data sets corresponding to the N = 27 different evaluations are
arranged according to tasks within 17 different Military Performance Stan-
dards (MPS; see [7]). We therefore considered first the number of "Yes's"
among the applicable requirements within each cell of MPS x category, for
each evaluation. 1In Table A.1 we present these statistics, as an example,
for EVAL 1. An exact test of the hypothesis that the probability of "Yes"
is the same for all the MPS's within a category would be very difficult
to perform, due to the small number of applicable requirements in each

cell.

Let eikj denote the probability of '"Yes" in EVAL i, MPS k ,

Category j (i=l,...,27 ; k=1,...17 3 j=1,...,10) . We consider the
set of null hypotheses:

y(1e3),

b 0

1k = Oij for all k=1,...,17 ;

at each i=1,...,27 ; j=1,...,10 .

In the spirit of the Bayesian approach of Section 3, we assume, a priori,

that 6

ik are independent random variables, having some prior distributions

ij(e) (k=1,...,17 ; j=1,...,10) . 1If the null hypotheses Hél’J) are

true for all (i,j) , the following null hypotheses should also be true:

For each Jos j=lye..,10,

('9j). JE-
H0 : ij = Yj for all k=1,...,17 ,
where
\ykj = ]eijkdﬂkj(()ijk) (A.1.1)

0
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* *
Let lykj and Mkj (k=1,...,17 , j=1,...,10) be the number of

satisfied and applicable requirements in the k-th MPS and j-th category,

summed over all the 27 evaluations. Let

*j k=1 ij
(j=1,...,10) (A.1.2)
and
M —;711:
RS

These statistics are given in Table A.2. We see in Table A.2 that
% *

the values of M’j are large ones, for all j=1,...,k ; and that Mkj
are generally not too small. We therefore consider, for each hypothesis

Hé"j), the chi-squared statistic

(k- Ep )
. o_ K *
7 = e (A.1.3)
] k=1 E, . J
kj
where
*
ot i k=1,...,17
= * ’ =lyeeey
kj kj M j=1.....10 (A.1.4)
3
*
* 1, if Mkj >0
I.. =
kj *
o , if Mkj =0 (A.1.5)
%* 17 *
and k, = ¥ I, ., . The estimates of the expected values of . , under
3 kﬁl kj P %
. *
the null hypothesis Hé »3) , are Ekj . The large sample distribution of
2 *
Tj is like that of a chi-squared random variable with vj = kj - 1 degrees

of freedom. In Table A.3 we provide the values of Tj and their P - values

_ 2 2,2 .
Pj =P {X lvj] > Tj|Tj} , 3=l,...,10 (A.1.6)

- 17 -
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1 214
1 245
2 212
2 232
3 0
3 0
4 63
4 63
5 110
5 121
6 101
6 113
7 225
7 243
8 48
8 53
9 118
9 123
10 81
10 83
11 48
11 48
12 49
12 54
13 21
13 24
14 28
14 30
15 10
15 10
16 8
16 8
17 0
17 0
TOTAL 1 1336
TOTAL N 1450

158
199

Ne)
LCOoOOOCOCOOo

110
64
74

123

140
54
68
89

101
26
26
31
33
87

100
17
18
22
23
19
19
24
24
39
43

852
978

*
The statistics X i

66
93
416
447

731
814

QOO0 O0OO0O0OOOOO0OOO0COCO0O

484
621

Table A.2

*

and M .

«]
0 65 351
0 70 413
162 218 367
182 239 440
993 77 21
1121 106 24
13 48 24
13 49 27
24 142 51
25 164 54
10 32 9
10 37 10
36 260 178
40 282 211
0 97 62
0 105 72
30 261 96
33 293 108
5 132 0
5 142 0
2 74 0
2 76 0
13 75 30
15 90 36
9 30 4
10 36 4
0 37 26
0 38 32
40 178 0
40 181 0
0 5 8
0 5 10
0 11 0
0 13 0

1337 1742 1227
1496 1926 1441
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216
283
204
228

74
77
162
189
180
193
347
372
70
89
86
94
80
95
104
107

1635
1858

T-450

64
75
207
225

473
523

219
258

QB = ~NOo~g
SN0 OOoOWnOo

NN
O O OO

N =

COO0OOODOO0OO0OOO0COOHWOOOOO

372
427
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where Xz[vj] is a chi-squared random variable, independent of T? .

with vj degrees of freedom

Table A.3

The values of T? and Pj

]
Cat. T§ Pj Cat. T? Pj
1 2.155 .99987 6 7.371 .96543
2 3.811 .99304 7 1.200 . 99996
3 7.326 .88458 8 10.183 .59991
4 1.089 . 95507 9 2.292 . 99357
5 1.112 .99991 10 1.452 . 91854

We see in Table A.3 that each one of the ten null-hypotheses Hé"j)

*

is strongly accepted (very high P - values). Let P be the combined

P - value of all the ten tests. According to the Bonferroni inequality [4],
10

P >1-1 (1-p,) . (A.1.7)
=t

Thus, according to the values in Table A.3, P* > .30988 . Thus, we
simultaneously accept all the ten null hypotheses, with a very high P*
value. Note that, if at least one of the null hypotheses hed been rejected
we should have concluded that assumption A.2 of Section 2 is not supported
by the data. However, since all the null hypotheses have been strongly

accepted, we conclude that the data is in accord with assumption A.2.

- 19 -
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APPENDIX 2

We show in the present appendix that asymptotically, the correlation
between eij and eij, is equivalent to. pjj" for j,ji'=l,...,k .

The inverse of (2.1) is

6., = sin2 (Y,,/2) , i=l1,...,N (A.2.1)
3 H j=l,...,k .

-1 ~
~
where Yij N (nij , Mij ) . Expand eij around nij to obtain

8 = 2 -
Gij sin (nij/Z) + (Yij nij) sin (nij/Z) cos (nij/2)

1
4+ 0 —_— , (A.2.2)
(&)

where OP(-) is an order-of-magnitude~in-probability symbol (see Zacks

[5; pp. 208)).

~ ~ n n ]
A = a ] = . 2 il 2 iu )

Let 31 (eil ""’eik) and {i (51n ( 2 )y s8iné( 2 ) .

Notice that sin(—g—) cos (—%—) = ; sin(n) . Let (D)i =

diag {sin(nil),...,sin(nik)} .

Then,
B, =1, + = (D), (Y, -n,) + 0, (=) (A.2.3)
N SV § 2 b QAN S P N i

Thus, as N —» « , the asymptotic covariance matrix of 0 is

$ @) = L () i (D) , (A.2.4)
n 4 i i i

where the elements of ti are gpecified in (2.2)., Accordingly, the

asymptotic variance of 6 is

ij

- 20 -
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A - 1 .2
AV {eij} —— sin (rlij)/Mij
and the asymptotic covariance of éij and eij' , jki' , is

I~ ~ _—l— . B
AC(Gij ,eij.) = DJ.J.. Sln(nij) sm(flij.)//MijMij.

Hence, the asymptotic correlation between eij and eij' is

all i=1,...,N .
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(A.2.5)

(A.2.6)
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